Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

CXCL12-induced macropinocytosis modulates two distinct pathways to activate mTORC1 in macrophages.

Identifieur interne : 000900 ( Main/Exploration ); précédent : 000899; suivant : 000901

CXCL12-induced macropinocytosis modulates two distinct pathways to activate mTORC1 in macrophages.

Auteurs : Regina Pacitto [États-Unis] ; Isabella Gaeta [États-Unis] ; Joel A. Swanson [États-Unis] ; Sei Yoshida [États-Unis]

Source :

RBID : pubmed:28250113

Descripteurs français

English descriptors

Abstract

Although growth factors and chemokines elicit different overall effects on cells-growth and chemotaxis, respectively-and activate distinct classes of cell-surface receptors, nonetheless, they trigger similar cellular activities and signaling pathways. The growth factor M-CSF and the chemokine CXCL12 both stimulate the endocytic process of macropinocytosis, and both activate the mechanistic target of rapamycin complex 1 (mTORC1), a protein complex that regulates cell metabolism. Recent studies of signaling by M-CSF in macrophages identified a role for macropinocytosis in the activation of mTORC1, in which delivery of extracellular amino acids into lysosomes via macropinocytosis was required for activation of mTORC1. Here, we analyzed the regulation of macropinosome (MP) formation in response to CXCL12 and identified 2 roles for macropinocytosis in the activation of mTORC1. Within 5 min of adding CXCL12, murine macrophages increased ruffling, macropinocytosis and amino acid-dependent activation of mTORC1. Inhibitors of macropinocytosis blocked activation of mTORC1, and various isoform-specific inhibitors of type 1 PI3K and protein kinase C (PKC) showed similar patterns of inhibition of macropinocytosis and mTORC1 activity. However, unlike the response to M-CSF, Akt phosphorylation (pAkt) in response to CXCL12 required the actin cytoskeleton and the formation of macropinocytic cups. Quantitative fluorescence microscopy showed that phosphatidylinositol (3,4,5)-trisphosphate (PIP3), a product of PI3K and an upstream activator of Akt, localized to macropinocytic cups and that pAkt occurred primarily in cups. These results indicate that CXCL12 activates mTORC1 via 2 mechanisms: 1) that the macropinocytic cup localizes Akt signaling and 2) that MPs convey extracellular nutrients to lysosomes.

DOI: 10.1189/jlb.2A0316-141RR
PubMed: 28250113
PubMed Central: PMC5295849


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">CXCL12-induced macropinocytosis modulates two distinct pathways to activate mTORC1 in macrophages.</title>
<author>
<name sortKey="Pacitto, Regina" sort="Pacitto, Regina" uniqKey="Pacitto R" first="Regina" last="Pacitto">Regina Pacitto</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gaeta, Isabella" sort="Gaeta, Isabella" uniqKey="Gaeta I" first="Isabella" last="Gaeta">Isabella Gaeta</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Swanson, Joel A" sort="Swanson, Joel A" uniqKey="Swanson J" first="Joel A" last="Swanson">Joel A. Swanson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yoshida, Sei" sort="Yoshida, Sei" uniqKey="Yoshida S" first="Sei" last="Yoshida">Sei Yoshida</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA seiyoshi@umich.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28250113</idno>
<idno type="pmid">28250113</idno>
<idno type="doi">10.1189/jlb.2A0316-141RR</idno>
<idno type="pmc">PMC5295849</idno>
<idno type="wicri:Area/Main/Corpus">000865</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000865</idno>
<idno type="wicri:Area/Main/Curation">000865</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000865</idno>
<idno type="wicri:Area/Main/Exploration">000865</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">CXCL12-induced macropinocytosis modulates two distinct pathways to activate mTORC1 in macrophages.</title>
<author>
<name sortKey="Pacitto, Regina" sort="Pacitto, Regina" uniqKey="Pacitto R" first="Regina" last="Pacitto">Regina Pacitto</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gaeta, Isabella" sort="Gaeta, Isabella" uniqKey="Gaeta I" first="Isabella" last="Gaeta">Isabella Gaeta</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Swanson, Joel A" sort="Swanson, Joel A" uniqKey="Swanson J" first="Joel A" last="Swanson">Joel A. Swanson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yoshida, Sei" sort="Yoshida, Sei" uniqKey="Yoshida S" first="Sei" last="Yoshida">Sei Yoshida</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA seiyoshi@umich.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of leukocyte biology</title>
<idno type="eISSN">1938-3673</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Bone Marrow Cells (cytology)</term>
<term>Cell Surface Extensions (drug effects)</term>
<term>Cell Surface Extensions (metabolism)</term>
<term>Chemokine CXCL12 (pharmacology)</term>
<term>Extracellular Space (metabolism)</term>
<term>Isoenzymes (metabolism)</term>
<term>Macrophages (cytology)</term>
<term>Macrophages (drug effects)</term>
<term>Macrophages (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Mice, Inbred C57BL (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Phosphorylation (drug effects)</term>
<term>Pinocytosis (drug effects)</term>
<term>Protein Kinase Inhibitors (pharmacology)</term>
<term>Proto-Oncogene Proteins c-akt (metabolism)</term>
<term>Ribosomal Protein S6 Kinases (metabolism)</term>
<term>Signal Transduction (drug effects)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Cellules de la moelle osseuse (cytologie)</term>
<term>Chimiokine CXCL12 (pharmacologie)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Espace extracellulaire (métabolisme)</term>
<term>Inhibiteurs de protéines kinases (pharmacologie)</term>
<term>Isoenzymes (métabolisme)</term>
<term>Macrophages (cytologie)</term>
<term>Macrophages (effets des médicaments et des substances chimiques)</term>
<term>Macrophages (métabolisme)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Phosphatidylinositol 3-kinases (métabolisme)</term>
<term>Phosphorylation (effets des médicaments et des substances chimiques)</term>
<term>Pinocytose (effets des médicaments et des substances chimiques)</term>
<term>Prolongements cytoplasmiques (effets des médicaments et des substances chimiques)</term>
<term>Prolongements cytoplasmiques (métabolisme)</term>
<term>Protéines proto-oncogènes c-akt (métabolisme)</term>
<term>Ribosomal Protein S6 Kinases (métabolisme)</term>
<term>Souris de lignée C57BL (MeSH)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids</term>
<term>Isoenzymes</term>
<term>Multiprotein Complexes</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Proto-Oncogene Proteins c-akt</term>
<term>Ribosomal Protein S6 Kinases</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Cellules de la moelle osseuse</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Bone Marrow Cells</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Surface Extensions</term>
<term>Macrophages</term>
<term>Phosphorylation</term>
<term>Pinocytosis</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Macrophages</term>
<term>Phosphorylation</term>
<term>Pinocytose</term>
<term>Prolongements cytoplasmiques</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Surface Extensions</term>
<term>Extracellular Space</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Complexes multiprotéiques</term>
<term>Espace extracellulaire</term>
<term>Isoenzymes</term>
<term>Macrophages</term>
<term>Phosphatidylinositol 3-kinases</term>
<term>Prolongements cytoplasmiques</term>
<term>Protéines proto-oncogènes c-akt</term>
<term>Ribosomal Protein S6 Kinases</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Chimiokine CXCL12</term>
<term>Inhibiteurs de protéines kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Chemokine CXCL12</term>
<term>Protein Kinase Inhibitors</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Mice, Inbred C57BL</term>
<term>Models, Biological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Modèles biologiques</term>
<term>Souris de lignée C57BL</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Although growth factors and chemokines elicit different overall effects on cells-growth and chemotaxis, respectively-and activate distinct classes of cell-surface receptors, nonetheless, they trigger similar cellular activities and signaling pathways. The growth factor M-CSF and the chemokine CXCL12 both stimulate the endocytic process of macropinocytosis, and both activate the mechanistic target of rapamycin complex 1 (mTORC1), a protein complex that regulates cell metabolism. Recent studies of signaling by M-CSF in macrophages identified a role for macropinocytosis in the activation of mTORC1, in which delivery of extracellular amino acids into lysosomes via macropinocytosis was required for activation of mTORC1. Here, we analyzed the regulation of macropinosome (MP) formation in response to CXCL12 and identified 2 roles for macropinocytosis in the activation of mTORC1. Within 5 min of adding CXCL12, murine macrophages increased ruffling, macropinocytosis and amino acid-dependent activation of mTORC1. Inhibitors of macropinocytosis blocked activation of mTORC1, and various isoform-specific inhibitors of type 1 PI3K and protein kinase C (PKC) showed similar patterns of inhibition of macropinocytosis and mTORC1 activity. However, unlike the response to M-CSF, Akt phosphorylation (pAkt) in response to CXCL12 required the actin cytoskeleton and the formation of macropinocytic cups. Quantitative fluorescence microscopy showed that phosphatidylinositol (3,4,5)-trisphosphate (PIP
<sub>3</sub>
), a product of PI3K and an upstream activator of Akt, localized to macropinocytic cups and that pAkt occurred primarily in cups. These results indicate that CXCL12 activates mTORC1 via 2 mechanisms: 1) that the macropinocytic cup localizes Akt signaling and 2) that MPs convey extracellular nutrients to lysosomes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28250113</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>09</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1938-3673</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>101</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2017</Year>
<Month>03</Month>
</PubDate>
</JournalIssue>
<Title>Journal of leukocyte biology</Title>
<ISOAbbreviation>J Leukoc Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>CXCL12-induced macropinocytosis modulates two distinct pathways to activate mTORC1 in macrophages.</ArticleTitle>
<Pagination>
<MedlinePgn>683-692</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1189/jlb.2A0316-141RR</ELocationID>
<Abstract>
<AbstractText>Although growth factors and chemokines elicit different overall effects on cells-growth and chemotaxis, respectively-and activate distinct classes of cell-surface receptors, nonetheless, they trigger similar cellular activities and signaling pathways. The growth factor M-CSF and the chemokine CXCL12 both stimulate the endocytic process of macropinocytosis, and both activate the mechanistic target of rapamycin complex 1 (mTORC1), a protein complex that regulates cell metabolism. Recent studies of signaling by M-CSF in macrophages identified a role for macropinocytosis in the activation of mTORC1, in which delivery of extracellular amino acids into lysosomes via macropinocytosis was required for activation of mTORC1. Here, we analyzed the regulation of macropinosome (MP) formation in response to CXCL12 and identified 2 roles for macropinocytosis in the activation of mTORC1. Within 5 min of adding CXCL12, murine macrophages increased ruffling, macropinocytosis and amino acid-dependent activation of mTORC1. Inhibitors of macropinocytosis blocked activation of mTORC1, and various isoform-specific inhibitors of type 1 PI3K and protein kinase C (PKC) showed similar patterns of inhibition of macropinocytosis and mTORC1 activity. However, unlike the response to M-CSF, Akt phosphorylation (pAkt) in response to CXCL12 required the actin cytoskeleton and the formation of macropinocytic cups. Quantitative fluorescence microscopy showed that phosphatidylinositol (3,4,5)-trisphosphate (PIP
<sub>3</sub>
), a product of PI3K and an upstream activator of Akt, localized to macropinocytic cups and that pAkt occurred primarily in cups. These results indicate that CXCL12 activates mTORC1 via 2 mechanisms: 1) that the macropinocytic cup localizes Akt signaling and 2) that MPs convey extracellular nutrients to lysosomes.</AbstractText>
<CopyrightInformation>© Society for Leukocyte Biology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pacitto</LastName>
<ForeName>Regina</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gaeta</LastName>
<ForeName>Isabella</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Swanson</LastName>
<ForeName>Joel A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yoshida</LastName>
<ForeName>Sei</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA seiyoshi@umich.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM110215</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>10</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Leukoc Biol</MedlineTA>
<NlmUniqueID>8405628</NlmUniqueID>
<ISSNLinking>0741-5400</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054377">Chemokine CXCL12</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007527">Isoenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047428">Protein Kinase Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D051057">Proto-Oncogene Proteins c-akt</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D019893">Ribosomal Protein S6 Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001854" MajorTopicYN="N">Bone Marrow Cells</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022081" MajorTopicYN="N">Cell Surface Extensions</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054377" MajorTopicYN="N">Chemokine CXCL12</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005110" MajorTopicYN="N">Extracellular Space</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007527" MajorTopicYN="N">Isoenzymes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008264" MajorTopicYN="N">Macrophages</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008810" MajorTopicYN="N">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010873" MajorTopicYN="N">Pinocytosis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047428" MajorTopicYN="N">Protein Kinase Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051057" MajorTopicYN="N">Proto-Oncogene Proteins c-akt</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019893" MajorTopicYN="N">Ribosomal Protein S6 Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Akt</Keyword>
<Keyword MajorTopicYN="Y">PI3K</Keyword>
<Keyword MajorTopicYN="Y">live-cell imaging</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>03</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2016</Year>
<Month>09</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>09</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>3</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28250113</ArticleId>
<ArticleId IdType="pii">jlb.2A0316-141RR</ArticleId>
<ArticleId IdType="doi">10.1189/jlb.2A0316-141RR</ArticleId>
<ArticleId IdType="pmc">PMC5295849</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Drug Des Devel Ther. 2015 Aug 28;9:4953-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26356032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2013 Aug 15;4(3):429-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23911287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Sep 23;6(9):e1001121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20886108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 May;1853(5):1205-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25704914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2013 Nov;19(11):1423-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24202395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Cancer Res. 2014;124:31-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25287686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2009 Apr 1;69(7):3221-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19293185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2015 Feb 16;6:38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25762935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Jul 16;162(2):259-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26144316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Breast Cancer Res. 2012 Feb 07;14(1):R23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22314082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2000 Mar 15;346 Pt 3:561-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10698680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2002 Jul;2(7):489-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12094235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2014 Dec 15;127(Pt 24):5228-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25335894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2009 Apr;10(4):364-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19192253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5795-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19297623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Jun 03;5:10300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26036864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Sep;12 (9):2813-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2006 Nov;34(Pt 5):647-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17052169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2015 Oct 12;211(1):159-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26438830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2014 Jul 17;41(1):49-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25035953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2015 Jan 30;6:1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25688210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2014 Jun 11;5:212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24966838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2015 Sep 15;128(18):3456-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26240177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2014 Jul 03;5:e1310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24991762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Sep 11;290(37):22385-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26216880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2014 Mar;15(3):155-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24556838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2013 May;38(5):233-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23465396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 May 5;268(13):9194-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8486620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2015 Jan 29;6:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25688212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carcinogenesis. 2008 Aug;29(8):1519-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18487224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2012;827:235-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22144279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 1995 Nov;5(11):424-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14732047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2013 Aug;21(8):380-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23830563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2012 Nov 21;19(11):1437-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23177198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1991 Apr 15;176(1):288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1708246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Apr 6;287(15):12132-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22337890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2005 Jun 15;65(12):5278-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15958574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2014 Jul;24(7):400-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24698685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2004 Oct 1;64(19):7022-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1993 Jun;121(5):1011-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8099075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Oct 28;286(43):37222-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21878648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 May 30;497(7451):633-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23665962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2016 Feb 18;35(7):816-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25961926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):274-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22500797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2008 Aug;9(8):639-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18612320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Nov 15;125(Pt 22):5467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22956548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2010 Feb 22;188(4):547-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20156964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Ther. 2010 Jul;9(7):1956-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20571069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Sep 15;122(Pt 18):3250-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19690049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):970-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2007 Apr 15;313(7):1496-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17368443</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Pacitto, Regina" sort="Pacitto, Regina" uniqKey="Pacitto R" first="Regina" last="Pacitto">Regina Pacitto</name>
</region>
<name sortKey="Gaeta, Isabella" sort="Gaeta, Isabella" uniqKey="Gaeta I" first="Isabella" last="Gaeta">Isabella Gaeta</name>
<name sortKey="Swanson, Joel A" sort="Swanson, Joel A" uniqKey="Swanson J" first="Joel A" last="Swanson">Joel A. Swanson</name>
<name sortKey="Yoshida, Sei" sort="Yoshida, Sei" uniqKey="Yoshida S" first="Sei" last="Yoshida">Sei Yoshida</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000900 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000900 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28250113
   |texte=   CXCL12-induced macropinocytosis modulates two distinct pathways to activate mTORC1 in macrophages.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28250113" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020